+2 MATHEMATICS - UNIT TEST 1

Time : $\mathbf{1}$ hr 30 min

Section-A
Mark : 100
Note: (i) All question are compulsory.
(ii) Each question carries one mark.
(iii) Choose the most suitable answer from the given four alternatives.

$$
20 \times 1=20
$$

1. If $A=\left[\begin{array}{lll}2 & 0 & 1\end{array}\right]$ then rank of AA^{T} is
2) consistent and has unique solution
3) consistent
4) inconsistent
2. If the matrix $\left(\begin{array}{ccc}-1 & 3 & 2 \\ 1 & \mathrm{k} & -3 \\ 1 & 4 & 5\end{array}\right)$ has inverse then
1) k is any real number
2) $k=-4$
3) $k \neq-4$
4) $k \neq 4$
3. If A is a matrix of order 3 , then $\operatorname{det}(k A)$
1) $\left.\left.\left.k^{3} \operatorname{det}(A) 2\right) k^{2} \operatorname{det}(A) 3\right) k \operatorname{det}(A) 4\right) \operatorname{det}(A)$
4. Every homogeneous system

1) is always consistent $\quad 2$) has only trivial solution 3) has infinitely many solutions4) need not be consistent
5. If A is a square matrix of order n, then $|\operatorname{adj} A|$ is

1) $\left.|\mathrm{A}|^{2} 2\right)|\mathrm{A}|^{\mathrm{n}}$
2) $|\mathrm{A}|^{\mathrm{n}-1}$
3) $|\mathrm{A}|$

6 The inverse of $\left(\begin{array}{ll}3 & 1 \\ 5 & 2\end{array}\right) \quad$ is

1) $\left(\begin{array}{cc}2 & -1 \\ -5 & 3\end{array}\right)$
2) $\left(\begin{array}{cc}-2 & 5 \\ 1 & -3\end{array}\right)$
$\left(\begin{array}{cc}3 & -1 \\ -5 & -3\end{array}\right)$
3) $\left(\begin{array}{cc}-3 & 5 \\ 1 & -2\end{array}\right)$
4)

12 1If $A=\left(\begin{array}{ll}2 & 1 \\ 3 & 4\end{array}\right)$, then $(\operatorname{adj} A) A=$
a) $\left(\begin{array}{cc}\frac{1}{5} & 0 \\ 0 & \frac{1}{5}\end{array}\right)$
b) $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ c) $\left(\begin{array}{cc}5 & 0 \\ 0 & -5\end{array}\right)$
d) $\left(\begin{array}{ll}5 & 0 \\ 0 & 5\end{array}\right)$

13 If A and B are any two matrices such that $\mathrm{AB}=$ 0 and A is non - singular, then

1) $\mathrm{B}=0$
2) B is singular
3) B is non -
singular 4$) \mathrm{B}=\mathrm{A}$

14 If $\mathrm{A}=\left[\begin{array}{ccc}2 & 0 & 1\end{array}\right]$, then rank of AA^{T} is

1) 1
2) 2
3) 3
4) 0

15 If A is a scalar matrix with scalar $\mathrm{k} \neq 0$, of order 3 , then A^{-1} is

1) $\left.\left.\left.\frac{1}{k^{2}} \mathrm{I} 2\right) \frac{1}{k^{3}} \mathrm{I} 3\right) \frac{1}{k} I \quad 4\right) \mathrm{kI}$.

16 Cramer's rule is applicable only (with three unknowns) when

1) $\Delta \neq 0$
2) $\Delta=0$
3) $\Delta=0, \Delta_{x} \neq 0$
4) $\Delta_{x}=\Delta_{y}=\Delta_{z}=0$

17 If $A=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ then the rank of $A A^{T}$ is

1) 3
2) 0
3) 1
4) 2

18 Equivalent matrices are obtained by 1)taking inverses $\quad 2$) taking transposes
3) takingadjoints
4) taking finite number of elementary transformations
19 The system of equations $a x+y+z=0, x+b y+$ $\mathrm{z}=0, \mathrm{x}+\mathrm{y}+\mathrm{cz}=0$ has a non - trivial solution then $\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}=$

1) 1
2) 2
3) -1
4) 0

20 If the rank of the matrix $\left(\begin{array}{ccc}\lambda & -1 & 0 \\ 0 & \lambda & -1 \\ -1 & 0 & \lambda\end{array}\right)$ is 2 then
λ is

1) 1
2) 2
3) 3
4) any real number

Section - B

Note: (i) Answer any FIVE questions. $5 \times 6=30$
(ii) Question No. 27 is compulsory and choose the four questions from the remaining.
(iii) Each question carries six marks.

21 If $\mathrm{A}=\left[\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{cc}0 & -1 \\ 1 & 2\end{array}\right]$ verify that $(\mathrm{AB})^{-1}=\mathrm{B}^{-1} \mathrm{~A}^{-1}$.
22 Find the adjoint of the matrix $A=\left[\begin{array}{cc}4 & -3 \\ 2 & 1\end{array}\right]$ and verify the result $A(\operatorname{adj} A)=(\operatorname{adj} A) A=|A|$ I
23 Find the rank of the matrix $\left[\begin{array}{cccc}1 & 2 & -1 & 3 \\ 2 & 4 & 1 & -2 \\ 3 & 6 & 3 & -7\end{array}\right]$
24 Solve the following non-homogeneous equations of three unknowns using determinants : $2 x+2 y+z=5 ; \quad x-y+z$ $=1 ; 3 \mathrm{x}+\mathrm{y}+2 \mathrm{z}=4$
25.If $A=\left[\begin{array}{ll}-2 & 3 \\ -4 & 5\end{array}\right]$ then verify that $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$.
26. For $\mathrm{A}=\left(\begin{array}{ccc}-1 & 2 & -2 \\ 4 & -3 & 4 \\ 4 & -4 & 5\end{array}\right)$, show that $\mathrm{A}=\mathrm{A}^{-1}$
27. (a) Solve the following system of linear equation by determinant method: $2 x+3 y=8,4 x+6 y=16$ (OR)
(b) Solve by matrix inversion method of system of linear equation $2 x-y=7 ; 3 x-2 y=11$

Section - C

Note: (i) Answer any five questions. $5 \times 10=50$
(ii) Question No. 34 is compulsory and choose the four questions from the remaining. (iii) Each question carries ten marks.

28 A small seminar hall can hold 100 chairs. Three different colours (red, blue and green) of chairs are available. The cost of a red chair is Rs. 240, cost of a blue chair is Rs. 260 and the cost of a green chair is Rs. 300. The total cost of chairs is Rs. 25,000 . Find atleast 3 different solutions of the number of chairs in each colour to be purchased.
29 Show that the equations $2 \mathrm{x}+5 \mathrm{y}+7 \mathrm{z}=52, \mathrm{x}+\mathrm{y} \quad+\mathrm{z}=9,2 \mathrm{x}+\mathrm{y}-\mathrm{z}=0$ are consistent and solve them by using rank method.

30 For what value of μ the equations $x+y+3 z=0,4 x+3 y+\mu z=0,2 x+y+2 z=0$ have a (i) trivial solution, (ii) non-trivial solution.
31 For what values of k , the system of equations. $\mathrm{k} x+\mathrm{y}+\mathrm{z}=1, x+\mathrm{ky}+\mathrm{z}=1, x+\mathrm{y}+\mathrm{kz}=1$ have (i) unique solution (ii) more than one solution (iii) no solution
32 Solve the following non-homogeneous system of linear equations by determinant method :

$$
x+2 y+z=2 ; 2 x+4 y+2 z=4 ; x-2 y-z=0
$$

33.If $A=\frac{1}{3}\left[\begin{array}{rrr}2 & 2 & 1 \\ -2 & 1 & 2 \\ 1 & -2 & 2\end{array}\right]$, prove that $A^{-1}=A^{T}$.
34. (a) Investigate for what values of λ, μ the simultaneous equations $x+y+z=6, x+2 y+3 z=10$, $x+2 \mathrm{y}+\lambda \mathrm{z}=\mu$ have (i) no solution (ii) a unique solution and (iii) an infinite number of solutions (OR)
(b) Solve by Cramer's rule : $\frac{1}{x}+\frac{2}{y}-\frac{1}{z}=1, \frac{2}{x}+\frac{4}{y}+\frac{1}{z}=5, \frac{3}{x}-\frac{2}{y}-\frac{2}{z}=0$

